Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 3323-3333, 2021.
Article in Chinese | WPRIM | ID: wpr-921428

ABSTRACT

Vibrio splendidus is an opportunistic pathogen in aquaculture. It can infect a variety of aquaculture animals and has caused huge losses to the aquaculture industry. In this study, a novel and efficient method for detecting V. splendidus was developed by combining the exonuclease Ⅲ amplification strategy with a nucleic acid test strip developed based on gold nanoparticles-labeled DNA probe. The results could be directly visualized by naked eyes, and this system overcame the difficulty in preparation of the monoclonal antibody used in conventional immunostrip. Upon optimization of experimental conditions, the detection limit of the strip was 5 ng/mL for the synthetic oligonucleotide DNA fragment and 10 ng/mL for the actual genomic DNA sample of V. splendidus. This test strip was more sensitive compared with the PCR method and was specific for the detection of V. splendidus. The rapid preparation of nucleic acid strip and the efficient detection of V. splendidus open a new way for the prevention and control of aquatic diseases.


Subject(s)
Animals , DNA Probes , Gold , Metal Nanoparticles , Vibrio/genetics
2.
Chinese Journal of Analytical Chemistry ; (12): 743-749, 2018.
Article in Chinese | WPRIM | ID: wpr-692309

ABSTRACT

Food-borne pathogenic bacteria seriously threaten public health. Based on the mechanism of fluorescence resonance energy transfer (FRET), a ratiometric fluorescence biosensor was constructed by integration of Exo III-based signal amplification strategy. The Cy3 labeled R1-DNA firstly hybridized with Cy5 labeled R2-DNA to form duplex of R1/R2. Cy3 showed a low fluorescence response while Cy5 showed a high fluorescence response. The addition of target pathogenic bacterial gene (Lac Z gene) could de-hybridize the R1/R2,resulting in the fluorescence decreasing of Cy5 and the fluorescence recovering of Cy3. Under the assistance of Exo III, the signal change was further amplified. The detection of limit reached as low as 5.29 pmol/L. The linear detection range was from 10 pmol/L to 2000 pmol/L. The developed ratiomtric detection strategy significantly reduced the possibility of false-positive and false-negative detection results.

3.
Chinese Journal of Analytical Chemistry ; (12): 303-308, 2017.
Article in Chinese | WPRIM | ID: wpr-514463

ABSTRACT

A highly sensitive and selective DNA biosensor is described based on the fluorescence quenching ability of MoS2 nanosheet and exonucleaseⅢ( ExoⅢ) assisted dual-signal amplification. In this sensor, the fluorescence probes ( HP1 and HP2 ) cannot be degraded by Exo Ⅲdue to the 3 '-termini protrusion and thus are adsorbed on the surface of MoS2 nanosheets, which will result in the quenching of MoS2 nanosheets toward the probes and induce a low fluorescent signal. The presence of the target DNA leads to the desorption of probes on the surface of MoS2 nanosheets due to the hybridization toward probes, generating many fluorescent fragments by Exo Ⅲdigestion and inducing dual-signal amplification. This method can improve the sensitivity and detection limit compared with single amplification method, and shows excellent selectivity in the discrimination of single base mismatched targets. On the basis of the significantly high sensitivity, the developed biosensor can be potentially extended to detect various DNA targets with excellent sequence selectivity.

4.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 104-106, 2005.
Article in Chinese | WPRIM | ID: wpr-336921

ABSTRACT

A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tet rachlorodibenzo p dioxin (TCDD) to generate TCDD: AhR: DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.

SELECTION OF CITATIONS
SEARCH DETAIL